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Abstract. In papers [1,2], the amplitudes of continuous-time quantum walk (CTQW) on graphs possessing
quantum decomposition (QD graphs) have been calculated by a new method based on spectral distribution
associated with their adjacency matrix. Here in this paper, it is shown that the CTQW on any arbitrary
graph can be investigated by spectral analysis method, simply by using Krylov subspace-Lanczos algorithm
to generate orthonormal bases of Hilbert space of quantum walk isomorphic to orthogonal polynomials.
Also new type of graphs possessing generalized quantum decomposition (GQD) have been introduced,
where this is achieved simply by relaxing some of the constrains imposed on QD graphs and it is shown
that both in QD and GQD graphs, the unit vectors of strata are identical with the orthonormal basis
produced by Lanczos algorithm. Moreover, it is shown that probability amplitude of observing the walk
at a given vertex is proportional to its coefficient in the corresponding unit vector of its stratum, and it
can be written in terms of the amplitude of its stratum. The capability of Lanczos-based algorithm for
evaluation of CTQW on graphs (GQD or non-QD types), has been tested by calculating the probability
amplitudes of quantum walk on some interesting finite (infinite) graph of GQD type and finite (infinite)
path graph of non-GQD type, where the asymptotic behavior of the probability amplitudes at the limit
of the large number of vertices, are in agreement with those of central limit theorem of [Phys. Rev. E 72,
026113 (2005)]. At the end, some applications of the method such as implementation of quantum search
algorithms, calculating the resistance between two nodes in regular networks and applications in solid state
and condensed matter physics, have been discussed, where in all of them, the Lanczos algorithm, reduces
the Hilbert space to some smaller subspaces and the problem is investigated in the subspace with maximal
dimension.

PACS. 03.65.Ud Entanglement and quantum nonlocality

1 Introduction

Random walks on graphs are the basis of a number of clas-
sical algorithms. Examples include 2-SAT (satisfiability
for certain types of Boolean formulas), graph connectivity,
and finding satisfying assignments for Boolean formulas.
It is this success of random walks that motivated the study
of their quantum analogs in order to explore whether they
might extend the set of quantum algorithms.

Recently, the quantum analogue of classical random
walks has been studied in a flurry of works [4–9]. The
works of Moore and Russell [8] and Kempe [9] showed
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faster bounds on instantaneous mixing and hitting times
for discrete and continuous quantum walks on a hy-
percube (compared to the classical walk). Several sys-
tems have been proposed as candidates to implement
quantum random walks. These proposals include atoms
trapped in optical lattices [10], cavity quantum electro-
dynamics (CQED) [11] and nuclear magnetic resonance
(NMR) in solid substrates [12,13]. In liquid-state NMR
systems [14], time resolved observations of spin waves has
been done [15]. It has also been pointed out that a quan-
tum walk can be simulated using classical waves instead
of matter waves [16,17].

A study of quantum walks on simple graph is well
known in physics (see [18]). Recent studies of quan-
tum walks on more general graphs were described
in [4,5,7,19,20]. Some of these works studies the prob-
lem in the important context of algorithmic problems on
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graphs and suggests that quantum walks is a promising
algorithmic technique for designing future quantum al-
gorithms. One approach for investigation of CTQW on
graphs is using the spectral distribution associated with
the adjacency matrix of graphs. Authors in [1,2] have in-
troduced a new method for calculating the probability am-
plitudes of quantum walk based on spectral distribution,
where a canonical relation between the Hilbert space of
stratification corresponding to the graph and a system of
orthogonal polynomials has been established, which leads
to the notion of quantum decomposition (QD) introduced
in [21,22] for the adjacency matrix of graph. Also it is
shown in [1] that by using spectral distribution one can ap-
proximate long time behavior of CTQW on infinite graphs
with finite ones and vice versa. In [1,2], only the particular
graphs of QD type have been studied.

Here in this work we try to investigate CTQW on ar-
bitrary graphs by spectral distribution method. To this
aim, first by turning the graphs into a metric space based
on distance function, we have been able to generalize
the stratification and quantum decomposition introduced
in [21], such that the basis of Hilbert space of quantum
walk consist of superposition of quantum kets of vertices
belonging to the same stratum, but with different coef-
ficients, while the coefficients are the same in QD case,
therefore QD graphs introduced in [1,21] are particular
kinds of graphs possessing generalized quantum decompo-
sition (GQD). Then we show that both in QD and GQD
graphs, the unit vectors of strata are identical with the
orthonormal basis produced by Lanczos algorithm. Also,
in the case of GQD graphs we show that probability am-
plitude of observing walk at a given vertex is proportional
to its coefficient in corresponding unit vector of its stra-
tum, and it can be written in terms of the amplitude of
its stratum. For more general graphs, the Lanczos algo-
rithm transforms the adjacency matrix into a tridiagonal
form (quantum decomposition) iteratively, where we use
this fact for studying non-QD type graphs. Indeed, the
Lanczos algorithm gives a three-term recursion structure
to the graph, so the spectral distribution associated with
adjacency matrix can be determined by Stieltjes/Hilbert
transform. In order to see the power of Lanczos-based al-
gorithm in the investigation of CTQW on arbitrary graphs
(GQD or non-QD types), we have calculated the ampli-
tudes of quantum walk on some interesting finite (infi-
nite) graph of GQD type and finite (infinite) path graph
of non-GQD type. The introduced formalism for investi-
gating the CTQW via Lanczos algorithm, shows the power
of this algorithm in reducing the space to some smaller ir-
reducible subspaces. Therefore, other than CTQW, in the
most physical problems such as implementation of quan-
tum search algorithms, calculating resistance between two
arbitrary nodes of regular networks, investigating tight-
binding Hamiltonian and special spin chain models, where
the Hamiltonian is projected to the largest irreducible sub-
space, the introduced method (reduction together with
spectral analysis method) can be applied.

The organization of the paper is as follows. In Sec-
tion 2, we review the Krylov subspace methods and

Lanczos algorithm. In Section 3, we give a brief outline
of some of the main features of graphs and introduce
generalized stratification. Section 4 is concerned with the
Hilbert space of generalized stratification. In Section 5,
we review the Stieltjes/Hilbert transform method for ob-
taining spectral distribution µ, and establish an isometry
between orthogonal polynomials and Hilbert space of gen-
eralized stratification. Section 6 is devoted to the method
for computing amplitudes of CTQW, through spectral dis-
tribution µ of the adjacency matrix A. In Section 7 we
calculate the amplitudes of quantum walk on some inter-
esting finite (infinite) graph of GQD type and finite (in-
finite) path graph of non-GQD type. Also, we study the
asymptotic behavior of the probability amplitudes at infi-
nite limit of number of vertices, where the obtained results
are in agreement with those of central limit theorem of ref-
erence [3]. Section 8 is devoted briefly to some possible ap-
plications such as algorithmic applications mostly search
algorithms, calculating resistance between two arbitrary
nodes of regular networks, applications in condensed mat-
ter physics, e.g. in investigating tight-binding Hamiltoni-
ans and special spin chain models. Paper is ended with a
brief conclusion together with two appendices.

2 Krylov subspace-Lanczos algorithm

In this section we give a brief review of some of the main
features of Krylov subspace projection methods and Lanc-
zos algorithm and more details are referred to [23–26].

Krylov subspace projection methods (KSPM) are
probably the most important class of projection methods
for linear systems and for eigenvalue problems. In KSPM,
approximations to the desired eigenpairs of an n×nmatrix
A are extracted from a d-dimensional Krylov subspace

Kd(|φ0〉, A) = span{|φ0〉, A|φ0〉, . . . , Ad−1|φ0〉}, (2.1)

where |φ0〉 is often a randomly chosen starting vector
called reference state and d� n. In practice, the retrieval
of desired spectral information is accomplished by con-
structing an orthonormal basis Vd ∈ Rn×d of Kd(|φ0〉, A)
and computing eigenvalues and eigenvectors of the d by d
projected matrix Hd = PVd

TAPVd
, where PVd

is projec-
tion operator to d-dimensional subspace spanned by the
basis Vd.

The most popular algorithm for finding an orthonor-
mal basis for the Krylov subspace, is Lanczos algorithm.
The Lanczos algorithm transforms a Hermitian matrix A
into a tridiagonal form iteratively, i.e., the matrix A will
be of tridiagonal form in the d-dimensional projected sub-
space Hd. In fact, the Lanczos algorithm is deeply rooted
in the theory of orthogonal polynomials, which builds
an orthonormal sequence of vectors {|φ0〉, |φ1〉, ..., |φd−1〉}
and satisfy the following three-term recursion relations

A|φi〉 = βi+1|φi+1〉 + αi|φi〉 + βi|φi−1〉. (2.2)

The vectors |φi〉, i = 0, 1, ..., d − 1 form an orthonormal
basis for the Krylov subspace Kd(|φ0〉, A). In these ba-
sis, the matrix A is projected to the following symmetric
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tridiagonal matrix:

Lj =

⎛
⎜⎜⎜⎝

α0 β1 0 ... ...
β1 α1 β2 0 ...
0 β2 α3 β3 ...
... ... ... ... ...
... ... 0 βd−1 αd−1

⎞
⎟⎟⎟⎠ ,

where the scalars βi+1 and αi are computed to satisfy two
requirements, namely that |φi+1〉 be orthogonal to |φi〉
and that ‖|φi+1〉‖ = 1.

In fact, the Lanczos algorithm is a modified version
of the classical Gram-Schmidt orthogonalization process.
As it can be seen, at its heart is an efficient three-term
recursion relation which arises because the matrix A is
real and symmetric.

If we define the Krylov matrixK such that the columns
of K are Krylov basis {Aiφ0; i = 0, ..., d− 1} as:

K := (|φ0〉, A|φ0〉, ..., Ad−1|φ0〉),
the application of the orthonormalization process to the
Krylov matrix is equivalent to the construction of an up-
per triangular matrix P such that the resulting sequence
Φ = KP satisfies Φ†Φ = 1. We denote by |φj〉 and Pj

respectively the jth column of Φ and P . Then we have

〈φ0|P †
i (A)Pj(A)|φ0〉 = 〈KPi|KPj〉 = 〈φi|φj〉, (2.3)

where Pi = a0 + a1A+ ...+ aiA
i is a polynomial of degree

i in indeterminate A.
In the remaining part of this section we give an algo-

rithmic outline of the Lanczos algorithm, where it will be
used in calculation of amplitudes of CTQW.

Lanczos algorithm

– Input: matrix A ∈ Rn×n, starting vector |φ0〉, ‖|φ0〉‖ =
1, scalar d,

– Output: orthogonal basis {|φ0〉, ..., |φd−1〉} of Krylov
subspace Kd(|φ0〉, A)

β0 = 0, |φ0〉 = |φ〉/‖|φ〉‖
for i = 0, 1, 2, ...

|υi〉 = A|φi〉
αi = 〈φi|υi〉

|υi+1〉 = |υi〉 − βi|φi−1〉 − αi|φi〉
βi+1 = ‖|υi+1〉‖

if βi+1 �= 0
|φi+1〉 = |υi+1〉/βi+1

else |φi+1〉 = 0.

3 Graphs, adjacency matrix and generalized
stratification

In this section we give a brief outline of some of the main
features of graphs such as adjacency matrix, distance func-
tion and then by turning the graphs into a metric space

based on distance function, we have been able to general-
ize the stratification introduced in [21]. A graph is a pair
Γ = (V,E), where V is a non-empty set and E is a sub-
set of {(α, β);α, β ∈ V, α �= β}. Elements of V and of E
are called vertices and edges, respectively. Two vertices
α, β ∈ V are called adjacent if (α, β) ∈ E, and in that
case we write α ∼ β. For a graph Γ = (V,E) we define
the adjacency matrix A by

Aαβ =
{

1 if α ∼ β
0 otherwise.

Obviously, (i) A is symmetric; (ii) an element of A takes
a value in {0, 1}; (iii) a diagonal element of A vanishes.
Conversely, for a non-empty set V , a graph structure is
uniquely determined by such a matrix indexed by V .

The degree or valency of a vertex α ∈ V is defined by

κ(α) = |{β ∈ V ;α ∼ β}|,
where | . | denotes the cardinality and κ(α) is finite
for all α ∈ V (local boundedness). A finite sequence
α0, α1, ..., αn ∈ V is called a walk of length n (or of n
steps) if αk−1 ∼ αk for all k = 1, 2, ..., n. For α �= β let
∂(α, β) be the length of the shortest walk connecting α and
β. By definition ∂(α, α) = 0 for all α ∈ V and ∂(α, β) = 1
if and only if α ∼ β. Therefore, graphs become metric
space with respect to above defined distance function ∂.

Now, in the remaining part of this section we try to
define generalized stratification based on distance func-
tion. To this aim, similar to association scheme [27] we
define a partition (called distance partition) on V × V ,
i.e., V × V =

⋃
i Γi based on distance function ∂, where

the subset Γi are defined by

Γi = {(α, β) ∈ V × V |∂(α, β) = i}. (3.4)

Using above distance partition one can define the set Γi(α)
(ith neighborhood of vertex α) as

Γi(α) = {β ∈ V |(α, β) ∈ Γi}. (3.5)

Obviously the class of subsets Γi(α) defined above parti-
tion V as

V =
⋃
i

Γi(α), (3.6)

(see Fig. 1). As we see the graph is stratified into a disjoint
union of strata, hence we call it the generalized stratifica-
tion based on distance function with respect to vertex α,
where the vertex α is referred to as a reference state (see
Fig. 2).

In this stratification for any connected graph Γ , we
have

Γ1(β) ⊆ Γi−1(α) ∪ Γi(α) ∪ Γi+1(α), (3.7)

for each β ∈ Γi(α).
Obviously above relations are similar to those of dis-

tance regular graphs [27], where in the later case the sets
Γi form an association scheme and the stratification Γi(α)
is independent of reference state α, but in an arbitrary
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Fig. 1. The stratification with respect to distance function.

Fig. 2. The finite path graph of Pn.

graph the generalized stratification depends on the choice
of reference state.

In order to study CTQW on a given graph via strati-
fication, we define in the following section a Hilbert space
which is suitable for Lanczos algorithm.

4 Hilbert space for the generalized
stratification

For a given graph Γ , let W denotes the vector space over
C consisting of column vectors whose coordinates are in-
dexed by vertex set V of Γ , and whose entries are in C
(i.e., W = Cn, with n = |V |). We observe that all n × n
matrices with entries from C act on W by left multipli-
cation. We endow W with the Hermitian inner product
〈, 〉 which satisfies 〈u, v〉 = utv̄ for all u, v ∈ W , where
t denotes the transpose and – denotes the complex con-
jugation. For all β ∈ V , let |β〉 denote the element of W
with a 1 in the β coordinate and 0 in all other coordinates.
We observe {|β〉|β ∈ V } is an orthonormal basis for W ,
but in this basis, W is reducible and can be reduced to
some irreducible subspaces. In the following we introduce
an orthonormal basis for irreducible subspace of W with
maximal dimension (denoted by W0), explicitly and then
explain how one can obtain basis for other irreducible sub-
spaces via Lanczos algorithm.

Hereafter, we fix a point o ∈ V as a reference state of
the graph. Then, with each stratum Γk(o) we associate a
vector |φk〉 in W called unit vector of kth stratum such
that W0 is spanned by {|φk〉}. In Section 6, we will deal
with CTQW, where W0 will be referred to as walk space
denoted by Vwalk, i.e., the strata {|φk〉} span a closed
subspace, where the quantum walk remains on it forever.

Since {|φk〉} become a complete orthonormal basis of
W0, one can often write

W0 =
∑

k

⊕C|φk〉. (4.8)

The unit vector associated with kth stratum Γk(o) of gen-
eralized stratification, is defined by

|φk〉 =
1√∑
α g

2
k,α

∑
α∈Γk(o)

gk,α|k, α〉, (4.9)

where, |k, α〉 denotes the eigenket of αth vertex at the
stratum k and integers gk,α ≥ 1 for each α ∈ Γk(o).

We refer to a graph as GQD graph if the coefficients
gk,α satisfy conditions appearing in Appendix A (the con-
ditions (A.ii) through (A.iv)).

By choosing gk,α = 1 for each α ∈ Γk(o), equation (4.9)
reduces to

|φk〉 =
1√|Γk(o)|

∑
α∈Γk(o)

|k, α〉, (4.10)

where, |φk〉, k = 0, 1, 2, ... correspond to unit vectors of
QD graphs of reference [1].

In the following we show that, for the QD type graphs
the unit vectors of strata given in equation (4.10), are
the same as the orthonormal basis produced via Lanczos
algorithm (this is true for GQD graphs too, where its proof
is referred to Appendix A). To do so, let us consider the
action of adjacency matrix A over |φk〉 as

A|φk〉 =
1√|Γk(o)|

∑
α∈Γk(o)

A|k, α〉

=
1√|Γk(o)|

∑
α∈Γk(o)

∑
ν∈Γk+1(o),ν∼α

|k + 1, ν〉

+
1√|Γk(o)|

∑
α∈Γk(o)

∑
ν∈Γk(o),ν∼α

|k, ν〉

+
1√|Γk(o)|

∑
α∈Γk(o)

∑
ν∈Γk−1(o),ν∼α

|k − 1, ν〉

=

√
|Γk+1(o)|
|Γk(o)|

1√|Γk+1(o)|
∑

ν∈Γk+1(o)

λk+1(ν)|k + 1, ν〉

+
1√|Γk(o)|

∑
ν∈Γk(o)

αk(ν)|k, ν〉

+

√
|Γk−1(o)|
|Γk(o)|

1√|Γk−1(o)|
∑

ν∈Γk−1(o)

λk(ν)|Γk(o)|
|Γk−1(o)| |k−1, ν〉.

(4.11)
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By defining βk = |Γk|1/2

|Γk−1|1/2λk(ν), λk(ν) = |{α ∈
Γk−1(o);α ∼ ν}| and αk = |{ν ∈ Γk; ν ∼ α}| for
α, ν ∈ Γk(o), the three-term recursion relations (4.11) re-
duce to those given in (2.2). Therefore, the adjacency ma-
trix takes a tridiagonal form in the basis |φk〉 (orthonormal
basis associated with strata), consequently these basis are
identical with the orthonormal basis produced by Lanczos
algorithm.

One should notice that, by applying Krylov-subspace
Lanczos algorithm to adjacency matrix A and reference
state |o〉, one obtains an orthonormal basis for the irre-
ducible subspace W0, where in CTQW by choosing start-
ing site of the walk as reference state, W0 will be the
same as walk space Vwalk. Orthonormal basis for other
irreducible subspaces Wi, i �= 0 can be obtained by choos-
ing new reference states orthogonal to the walk space and
applying Lanczos algorithm to adjacency matrix with the
new chosen reference states, respectively. Therefore W is
semisimple, i.e., it can be decomposed as direct sum of
irreducible subspaces as

W = W0 ⊕W1 ⊕ ...⊕Wl. (4.12)

5 Spectral distribution of the adjacency
matrix A

One of the most important applications of spectral analy-
sis method is to analyze a set of two-state diffusion equa-
tions, which was first used by Zusman [28] to treat sol-
vent effects on three electron transfer in the non-adiabatic
limit. In [29], the spectral analysis approach developed
in [30] has been employed to study the electron transfer
dynamics in mixed-valence systems. The analysis allows
one to characterize multiple time-scales in electron trans-
fer processes including vibrational relaxation, electronic
coherence, activated curve crossing or barrier crossing.
Also, since the advent of random matrix theory (RMT),
there has been considerable interest in the statistical anal-
ysis of spectra [31–34]. RMT can be viewed as a generaliza-
tion of the classical probability calculus, where the concept
of probability density distribution for a one-dimensional
random variable is generalized onto an averaged spectral
distribution of the ensemble of large, non-commuting ran-
dom matrices. Such a structure exhibits several phenom-
ena known in classical probability theory, including central
limit theorems [35]. In RMT, the Poisson distribution and
the Wigner-Dyson distributions have been found to be of
universal relevance. The prominent features of these dis-
tributions are conveniently characterized with the help of
spectral observables such as the nearest-neighbor spacing
distribution and the number variance; The former stresses
the correlations on a short scale, while the latter measures
the stiffness of the spectrum, i.e. long-range spectral cor-
relations.

Actually the spectral analysis of operators is an im-
portant issue in quantum mechanics, operator theory and
mathematical physics [36,37]. As an example µ(dx) =

|ψ(x)|2dx (µ(dp) = |ψ̃(p)|2dp) is a spectral distribu-
tion which is assigned to the position (momentum) op-
erator X̂(P̂ ). Moreover, in general quasi-distributions
are the assigned spectral distributions of two hermitian
non-commuting operators with a prescribed ordering. For
example the Wigner distribution in phase space is the as-
signed spectral distribution for two non-commuting op-
erators X̂ (shift operator) and P̂ (momentum operator)
with Wyle-ordering among them [38,39].

It is well-known that, for any pair (A, |φ0〉) of a matrix
A and a vector |φ0〉, it can be assigned a measure µ as
follows

µ(x) = 〈φ0|E(x)|φ0〉, (5.13)

where E(x) =
∑

i |ui〉〈ui| is the operator of projection
onto the eigenspace of A corresponding to eigenvalue x,
i.e.,

A =
∫
xE(x)dx. (5.14)

It is easy to see that, for any polynomial P (A) we have

P (A) =
∫
P (x)E(x)dx, (5.15)

where for discrete spectrum the above integrals are re-
placed by summation.

Here in this paper we are concerned with spectral dis-
tribution of adjacency matrices of graphs, since the spec-
trum of a given graph can be determined by spectral dis-
tribution of its adjacency matrix A.

Therefore, using the relations (5.13) and (5.15), the
expectation value of powers of adjacency matrix A over
starting site |φ0〉 can be written as

〈φ0|Am|φ0〉 =
∫

R

xmµ(dx), m = 0, 1, 2, ... (5.16)

The existence of a spectral distribution satisfying (5.16)
is a consequence of Hamburgers theorem, see e.g., Shohat
and Tamarkin ([40], Theorem 1.2).

Obviously relation (5.16) implies an isomorphism from
the Hilbert space of generalized stratification onto the
closed linear span of the orthogonal polynomials with re-
spect to the measure µ. Since, from the orthogonality of
vectors |φj〉 (Hilbert space of generalized stratification)
produced from Lanczos algorithm process we have,

δij = 〈φi|φj〉 = 〈φ0|P †
i (A)Pj(A)|φ0〉

=
∫
P ∗

i (x)Pj(x)µ(x)dx = (Pi, Pj)µ. (5.17)

Conversely if P0, ..., Pn−1 is the system of orthonormal
polynomials for the measure µ then the vectors

|φj〉 = Pj(A)|φ0〉, (5.18)

will coincide with the sequence of orthonormal vectors pro-
duced by the Lanczos algorithm applied to (A, |φ0〉).

Now, substituting (5.18) in (2.2), we get three term re-
cursion relations between polynomials Pj(A), which leads
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to the following three term recursion between polynomials
Pj(x)

βk+1Pk+1(x) = (x− αk)Pk(x) − βkPk−1(x) (5.19)

for k = 0, ..., n− 1.
Multiplying by β1...βk we obtain

β1...βk+1Pk+1(x) = (x− αk)β1...βkPk(x)

− β2
k.β1...βk−1Pk−1(x). (5.20)

By rescaling Pk as P ′
k = β1...βkPk, the spectral distribu-

tion µ under question is characterized by the property of
orthonormal polynomials {P ′

n} defined recurrently by

P ′
0(x) = 1, P ′

1(x) = x,

xP ′
k(x) = P ′

k+1(x) + αkP
′
k(x) + β2

kP
′
k−1(x), (5.21)

for k ≥ 1.
If such a spectral distribution is unique, the spectral

distribution µ is determined by the identity:

Gµ(z) =
∫

R

µ(dx)
z − x

=
1

z − α0 − β2
1

z−α1− β2
2

z−α2− β2
3

z−α3−···

=
Q

(1)
n−1(z)
P ′

n(z)
=

n∑
l=1

Al

z − xl
, (5.22)

where, xl are the roots of polynomial P ′
n(x). Gµ(z) is

called the Stieltjes/Hilbert transform of spectral distri-
bution µ and polynomials {Q(1)

k } are defined recurrently
as

Q
(1)
0 (x) = 1, Q

(1)
1 (x) = x− α1,

xQ
(1)
k (x) = Q

(1)
k+1(x) + αk+1Q

(1)
k (x) + β2

k+1Q
(1)
k−1(x),

(5.23)
for k ≥ 1. The coefficients Al appearing in (5.22) are the
same Guass quadrature constants which are calculated as

Al = lim
z→xl

(z − xl)Gµ(z). (5.24)

Now let Gµ(z) is known, then the spectral distribution
µ can be recovered from Gµ(z) by means of the Stielt-
jes/Hilbert inversion formula as

µ(y) − µ(x) = − 1
π

lim
v−→0+

∫ y

x

Im{Gµ(u+ iv)}du. (5.25)

Substituting the right hand side of (5.22) in (5.25), the
spectral distribution can be determined in terms of xl, l =
1, 2, ... and Guass quadrature constants Al, l = 1, 2, ... as

µ =
∑

l

Alδ(x− xl) (5.26)

(for more details see Refs. [22,40–42]).
Finally, using the relation (5.18) and the recursion re-

lations (5.21) of polynomial P ′
k(x), the other matrix ele-

ments 〈φk|Am | φ0〉 can be calculated as

〈φk|Am | φ0〉 =
1

β1β2 · · ·βk

∫

R

xmP ′
k(x)µ(dx),

m = 0, 1, 2, ... (5.27)

6 Investigation of CTQW on an arbitrary
graph via spectral distribution of its
adjacency matrix

For a given undirected graph Γ with n vertices and adja-
cency matrix A, one can define the Laplacian L = A−D,
where D is the diagonal matrix with Djj = deg(j), the
degree of vertex j. Classically, the continuous time ran-
dom walk (CTRW) on Γ is a Markov process with a fixed
probability per unit time γ of hopping from a given vertex
to one of its neighbors. In other words, the probability of
hopping to any connected vertex in a time ε is γε (in the
limit ε→ 0). This walk is governed by the master equation
(Kolmogorov’s equation) [43]

dqj(t)
dt

= γ
∑

k

Ljkqk(t), (6.28)

where, qj(t) is the probability of being at vertex j at
time t. Since the columns of L sum to zero, probability
is conserved. Equation (6.28), is spatially discrete, but it
also admits extensions to continuous spaces, e.g., lead-
ing to the disordered Lorentz gas model, which describes
the dynamics of an electron through a disordered sub-
strate [44]. The derivation of master equation for random
walks on unweighted, undirected graphs, has been studied
in [45,46].

We now turn to one quantum mechanical extension
of the problem, the so-called CTQW. The CTQW on
the graph Γ is defined by replacing master equation of
continuous-time classical random walk (Eq. (6.28)) with
Schrödinger’s equation [43,47] where, γ is set to 1 for con-
venience and L (the Laplacian of the graph) is chosen as
the Hamiltonian of the walk. This is because we can view
L as the generator matrix that describes an exponential
distribution of waiting times at each vertex.

Although, CTQW was introduced by Farhi and
Gutmann [4] (see also [5,8]), our treatment, follow closely
the analysis of Moore and Russell [8]. As illustrated in
Section 4, for 0 ≤ i ≤ d, the unit vectors |φi〉 of equa-
tion (4.10) form a basis for Hilbert space of CTQW start-
ing from a given site [2]. Let |φ(t)〉 be a time-dependent
amplitude of the quantum process on graph Γ . The wave
evolution of the quantum walk is governed by

i�
d

dt
|φ(t)〉 = H |φ(t)〉, (6.29)

where we assume � = 1. Let, |φ0〉 be the initial amplitude
wave function of the particle. Then, the solution to (6.29),
is given by |φ0(t)〉 = e−iHt|φ0〉. On d-regular graphs, D =
1
dI, and since A and D commute, we get

e−itH = e−it(A− 1
d I) = e−it/de−itA. (6.30)

This introduces an irrelevant phase factor in the wave evo-
lution. Hence we can considerH = A = A1. Thus, we have

|φ0(t)〉 = e−iAt|φ0〉. (6.31)
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One of our main goals in this paper is the evaluation
of probability amplitudes for CTQW by using equa-
tion (5.27), such that we have

qk0(t) ≡ qk(t) = 〈φk|e−iAt | φ0〉
=

1
β1β2 · · ·βk

∫

R

e−ixtP ′
k(x)µ(dx), (6.32)

where qk(t) is the amplitude of observing the walk
at stratum k at time t. The conservation of probabil-
ity

∑
k=0 | qk(t) |2 = 1 follows immediately from equa-

tion (6.32), simply by using the completeness relation of
orthogonal polynomials P ′

k(x).
Investigation of CTQW via spectral distribution

method, pave the way to approximate infinite graphs with
finite ones and vice versa, simply via Gauss quadrature
formula, where in cases of infinite graphs, one can study
asymptotic behavior of walk at large enough times by us-
ing the method of stationary phase approximation (for
more details see [1]).

One should note that, the spectral distribution is
Fourier transform of the amplitude of observing the walk
at starting site at time t, i.e.,

q0(t) =
∫
e−ixtµ(x)dx �−→ µ(x) =

1
2π

∫
eixtq0(t)dt.

(6.33)
Above relations imply that

qk(t) =
1

β1β2 · · ·βk

∫
P ′

k(x)e−ixtµ(x)dx

=
1

2πβ1β2 · · ·βk

∫
P ′

k(x)q0(t′)e−ix(t−t′)dt′dx, (6.34)

therefore, the amplitudes qk(t) can be written in terms of
the amplitude q0(t).

Obviously for finite graphs, the formula (6.32) yields

qk(t) =
1

β1β2 · · ·βk

∑
l

Ale
−ixltP ′

k(xl), (6.35)

where by straightforward calculation one can evaluate the
average probability for the finite graphs as

P (k)= lim
T→∞

1
T

∫ T

0

| qk(t) |2dt= 1
β1β2 · · ·βk

∑
l

A2
l P

′2
k(xl).

(6.36)
In Appendix I of reference [1] it is proved that for QD
graphs the amplitudes on the vertices belonging to the
one stratum is the same, hence the probability of observ-
ing the walk at a site belonging to stratum k is equal to
|qk(t)|2
|Γk(o)| . Unfortunately for non-QD graphs the lemma ap-
pearing in Appendix I of reference [1] is not true any more,
consequently the probability amplitudes of observing walk
at sites can not be obtained from those of strata in a sim-
ple way and reader can follow the details of calculation of
amplitudes in Appendix B.

Fig. 3. Generalized QD graph.

7 Examples

7.1 Generalized QD graphs

Here in this subsection we give examples of GQD
type graphs. These graphs look like kite and they are
embedded in Zk, k = 2, 3, ... lattices and defined as
follows: let K(k, n) be an k-dimensional lattice graph
with n + 1 generalized strata, which consists of ver-
tices (0, 0, ..., 0)︸ ︷︷ ︸

k

, (l, 0, ..., 0), (0, l, 0, ..., 0), ..., (0, 0, ...0, l)

and (l, l, ..., l)︸ ︷︷ ︸
k

only for odd values of l, where

l = 0, 1, ..., n. The vertex (0, 0, ..., 0) is connected
to vertices (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1), the
vertex (0, ..., 0, l︸︷︷︸

i

, 0, ..., 0) is connected to vertices

(0, ..., 0, l− 1︸︷︷︸
i

, 0, ..., 0) and (0, ..., 0, l+ 1︸︷︷︸
i

, 0, ..., 0) for each

i = 1, ..., k, but for odd values of l, there is an extra
connection between (0, ..., 0, l︸︷︷︸

i

, 0, ..., 0) and (l, l, ..., l)

(see Fig. 3 for k = 2, n = 6).
Now, we define unit vectors of generalized strata in

such a way that, they coincide with the orthonormal basis
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produced by lanczos algorithm (see Appendix A)

|φ0〉 = | 0, 0, ..., 0︸ ︷︷ ︸
k

〉

|φ1〉 =
1√
k

∑
perm.

|1, 0, ..., 0〉

|φ2〉 =
1√

k(k + 1)
(

∑
perm.

|2, 0, ..., 0〉+ k|1, 1, ..., 1〉)

...

|φ2l−1〉 =
1√
k

∑
perm.

|2l− 1, 0, ..., 0〉

|φ2l〉 =
1√

k(k + 1)
(

∑
perm.

|2l, 0, ..., 0〉

+ k|2l− 1, 2l− 1, ..., 2l− 1〉), (7.37)

where, the summations are taken over all possible permu-
tations. Using the relations (A.ii)–(A.iv), one can show
that the coefficients βi and αi are

β2
1 = k, β2

2 = β2
3 = ... = k + 1 and αi = 0, i = 1, 2, ...

(7.38)
Now, one can study CTQW on these graphs for finite val-
ues of n simply by following the general prescriptions, but
here we restrict ourselves to infinite n. Substituting coeffi-
cients βi and αi in (5.22), the Stieltjes/Hilbert transform
Gµ(z) of spectral distribution µ takes the following form

Gµ(z) =
1

z − k
z− k+1

z− k+1
z−···

. (7.39)

In order to evaluate above infinite continued fraction, we
need first to evaluate the following infinite continued frac-
tion defined as

G̃(z) =
1

z − k+1
z− k+1

z− k+1
z−···

=
1

z − (k + 1)G̃(z)
, (7.40)

where by solving above equation, we get

G̃(z) =
z − √

z2 − 4(k + 1)
2(k + 1)

. (7.41)

Inserting (7.41) in (7.40), we get

Gµ(z) =
1

z − kG′
µ(z)

, (7.42)

then substituting (7.41) in (7.42), we obtain the following
expression for Stieltjes/Hilbert transform of µ

Gµ(z) =
(k + 2)z − k

√
z2 − 4(k + 1)

2(k2 + z2)
, (7.43)

finally by applying Stieltjes/Hilbert inversion formula, we
get the absolutely continuous part of spectral distribution
µ as follows

µ(x) =
k

2π

√
4(k + 1) − x2

k2 + x2
, |x| ≤ 2

√
k + 1. (7.44)

Now, we study the probability amplitudes of walk at time
t in the limit of large k i.e.,

ql(t) = lim
k→∞

〈φl|e
−iAt√

k | φ0〉

= lim
k→∞

1√
k(k + 1)l

∫ 2
√

k+1

−2
√

k+1

e
−ixt√

k

× P ′
l (x)

k

2π

√
4(k + 1) − x2

k2 + x2
dx

= lim
k→∞

1
2π

√
k(k + 1)l

∫ 2
√

(k+1)/k

−2
√

(k+1)/k

e−ixt

× P ′
l (
√
kx)

√
4(k + 1)/k − x2

1 + x2/k
dx

=
1
2π

∫ 2

−2

e−ixtP ′
l,∞(x)

√
4 − x2dx

=
2
π

∫ 1

−1

e−i2xtP ′
l,∞(2x)

√
1 − x2dx, (7.45)

where the polynomial P ′
l,∞(x) is defined by

P ′
l,∞(x) = lim

k→∞
1√

k(k + 1)l−1
P ′

l (
√
kx). (7.46)

Now, substituting βi and αi from (7.38) in three-term re-
cursion relations (5.21), we obtain the following relations
for polynomials P ′

l (x)

P ′
0(
√
kx) = 1,

P ′
1(
√
kx) =

√
kx,

P ′
2(
√
kx) = kx2 − k,√

kxP ′
l (
√
kx) = P ′

l+1(
√
kx) + (k + 1)P ′

l−1(
√
kx),

l = 3, 4, ... (7.47)

Then dividing left and right hand sides of the recursion
relations in (7.47) by

√
k(k + 1)l−1 and taking the limit

at k → ∞, one can obtain the following recursion relations
for P ′

l,∞(x)

P ′
0,∞(x) = 1,

P ′
1,∞(x) = lim

k→∞

√
kx√
k

= x,

P ′
2,∞(x) = lim

k→∞
kx2 − k√
k(k + 1)

= x2 − 1,

xP ′
l,∞(x) = P ′

l+1,∞(x) + P ′
l−1,∞(x), l = 3, 4, ... (7.48)

By comparing the recursion relations (7.48) of P ′
l,∞(x)

with those of Tchebichef polynomials of second kind, we
conclude that

P ′
l,∞(x) = Ul(x/2), (7.49)

where, Ul(x)’s are Tchebichef polynomials of second kind.
Therefore the probability amplitudes in equation (7.45)
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can be rewritten as

ql(t) =
2
π

∫ 1

−1

e−2ixtUl(x)
√

1 − x2dx

=
2
π

∫ 1

−1

e−2ixt sin((l + 1) cos−1 x)dx. (7.50)

Now, by doing the change the variable x = cos θ, the in-
tegral (7.50) can be written as

ql(t) =
2
π

∫ π

0

e−2it cos θ sin((l + 1)θ) sin θdθ. (7.51)

Then, using the following integral representation of Bessel
polynomials

Jl(x) =
i−l

π

∫ π

0

e−ix cos θ cos θdθ, (7.52)

the integral in (7.51) can be written as

ql(t) = il(Jl(2t) + Jl+2(2t)). (7.53)

Now, from the recursion relations for Bessel polynomi-
als, i.e.,

Jl+1(x) =
2l
x
Jl(x) − Jl−1(x), (7.54)

we obtain the following expression for the probability am-
plitudes of walk in the limit of large k

ql(t) = (l + 1)il
Jl+1(2t)

t
, (7.55)

where the results are in agreement with the corresponding
quantum central limit theorem of reference [3].

7.2 Non-GQD type graphs

In this subsection we study an example of non-GQD type
graphs, those graphs that do not possess three term re-
cursion property. In order to obtain spectral distribution
of adjacency matrix of a give non-GQD graph, we need
to find the basis in which the adjacency matrix has tridi-
agonal form. To this aim we have to choose starting site
of walk as a reference state and then apply Lanczos al-
gorithm to its adjacency matrix. Then by using spectral
distribution, we will be able to calculate the amplitudes
of walk as will be explained in the following example.

7.2.1 Walk on finite path graph with second vertex
as the starting site of the walk

Finite path graph Pn = {1, 2, ...} is a n-vertex graph with
n − 1 edges all on a single open path [1]. For this graph,
the stratification depends on the choice of starting site of
walk. If we choose the second vertex as starting site of the
walk, as it is shown in Figure 2, the graph does not satisfy
a three term recursion relations, i.e., the adjacency matrix
has not tridiagonal form.

Therefore, in order to find the basis in which the ad-
jacency matrix has tridiagonal form, we have to apply
Lanczos algorithm to the adjacency matrix A of the graph
Pn, where starting site |φ0〉 = |1〉 is chosen as a reference
state. Also, the Lanczos algorithm provides the coefficients
α and β from which the Stieltjes/Hilbert transform Gµ(z)
of µ, equation (5.22) can be calculated.

Hence, following the prescription of Lanczos algorithm
given in Section 2, we get the following results for Pn,
which are different for even and odd values of n.

A. n = 2k
αi = 0, i = 0, 1, ..., 2k − 1,

β2i =

√
i

i+ 1
,

β2i−1 =

√
i+ 1
i

, i = 1, ..., k − 1,

β2k−1 =
1√
k
.

B. n = 2k + 1
αi = 0, i = 0, 1, ..., 2k − 1,

β2i =

√
i

i+ 1
, i = 1, ..., k − 1

β2i−1 =

√
i+ 1
i

, i = 1, ..., k, respectively.

Substituting the coefficients αi and βi in (5.21)
and (5.23), and using (5.22), we get the following closed
form of the Stieltjes/Hilbert transform of µ

Gµ(z) =
zUn−2(z/2)
Un(z/2)

(7.56)

where, Un’s are Tchebichef polynomials of second kind.
Therefore, the roots xl appearing in (5.22) are roots
of Tchebichef polynomials of second kind, i.e., xl =
2 cos( lπ

n+1 ). Also, using (5.24) we get the following expres-
sion for the coefficients Al

Al =
2

n+ 1
sin2

(
2lπ
n+ 1

)
. (7.57)

Thus, spectral distribution is given by

µ =
2

n+ 1

n∑
l=1

sin2

(
2lπ
n+ 1

)
δ

(
x− 2 cos

(
lπ

n+ 1

))
.

(7.58)
Then the probability amplitude of the walk at starting
site at time t is

q0(t) =
1

n+ 1

n∑
l=1

sin2

(
2lπ
n+ 1

)
e−2it cos lπ/(n+1), (7.59)

again one can calculate the other amplitudes by using
equation (6.35).

It should be noticed that, for odd n the Lanczos algo-
rithm produces n− 1 orthonormal basis, therefore for cal-
culating the amplitudes on vertices we need to construct
an extra vector orthogonal to the walk space Vwalk.
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Finally, in the limit of large n, the continuous part of
spectral distribution µ(x) is obtained as follows

µ(x) =
2
π

∫ π

0

dy sin2(2y)δ(x− 2 cos(y))

=
2
π

∫ π

0

dy
sin2(2y)δ(y − arccos(x/2))

2 sin(y)

=
4
π

∫ π

0

dy sin(y) cos2(y)δ(y − arccos(x/2))

=
1
2π
x2

√
4 − x2, −2 ≤ x ≤ 2. (7.60)

Therefore, the probability amplitude of the walk at start-
ing site at time t is

q0(t) =
1
2π

∫ 2

−2

e−ixtx2
√

4 − x2dx

=
4J1(2t)

t
− 6J2(2t)

t2
, (7.61)

where, the above result is obtained by making the change
of variable x = cos θ, and using the integral represen-
tation of Bessel polynomials given in (7.47). Similarly,
other amplitudes of walk can be calculated by using equa-
tion (6.32).

8 Some applications

In this section, some applications of CTQW and the
introduced spectral analysis approach based on Krylov
subspace-Lanczos algorithm are discussed briefly. The ap-
plications include algorithmic applications, computation
of the resistance between two nodes in a resistor net-
work and applications in solid state and condensed matter
physics which are discussed in the following.

8.1 Algorithmic applications

Random walks provide a nice description of how classi-
cal particles diffuse toward some kind of equilibrium. Be-
cause quantum particles can become delocalized (i.e. can
go many directions simultaneously), one might expect al-
gorithms based on a quantum version of a random walk
to outperform those based on classical random walks. In-
deed, polynomial speed-ups are standard and some expo-
nential improvements have also been found. As illustrated
in Section 6, a CTQW on a graph is indistinguishable
from ordinary Schrödinger time-evolution under the in-
fluence of some Hamiltonian/adjacency matrix. This im-
plies that any efficient algorithm to simulate a Hamilto-
nian can be effected by a quantum walk over some graph,
and vice versa.

To illustrate the power of quantum walks, we describe
a way to implement Grover’s algorithm [48] using CTQW,
designed to find with high probability a marked element
of some unsorted database. Consider the complete graph

with n vertices. One of the eigenstates of the associated
Hamiltonian H = A is the uniform superposition

|ψ〉 =
1√
n

∑
j

|j〉. (8.62)

This is because other than a factor of I, the Hamiltonian
itself is H = n|ψ〉〈ψ|. Now suppose that the vertex q is
marked, and we would like to evolve the initial state |ψ〉
under the influence of some Hamiltonian, so that |ψ〉 → |q〉
after some time t. To approach the Grover problem with
a CTQW, we need to modify the Hamiltonian so that
the vertex q is special. It turns out that for the complete
graph, one simply needs to use the following Hamiltonian

H = − 1
n
A− |q〉〈q| = −|ψ〉〈ψ| − |q〉〈q| + 1

n
I. (8.63)

The extra factor of 1
nI just gives a constant shift to

the energy and has no effect on the time dynamics ex-
cept to shift the wavefunction’s phase. The solution re-
quires inverting the Schrödinger equation (6.29), so that
qj(t) = exp(−iHt)qj(0). But to obtain an analytical so-
lution for U(t) = exp(−iHt), we need to expand in an
orthogonal basis, and the vectors |ψ〉 and |q〉 are not or-
thogonal; rather, 〈q|ψ〉 ≡ x = 1√

n
for any q. To make

further progress, we first need to use an orthogonal basis;
let’s define a vector |p〉 that is explicitly orthogonal to |q〉:

|p〉 =
1√

1 − x2
(|ψ〉 − x|q〉). (8.64)

It should be noticed that, the new orthonormal basis
{|q〉, |p〉} is the same as the stratification basis produced
by Krylov-subspace Lanczos algorithm applied to to the
pair (A, |q〉). Now the restriction of the Hamiltonian and
initial state |ψ〉 to the subspaceW0 with the basis {|q〉, |p〉}
(irreducible subspace of adjacency matrix with maximal
dimension, see Sect. 4 for more details) reads as

−H =
(

1 + x2 x
√

1 − x2

x
√

1 − x2 1 − x2

)

and |ψ〉 = x|q〉 +
√

1 − x2|p〉, (8.65)

respectively. The eigenvalues ofH are given by 1±x. Then,
one can easily obtain

|ψ(t)〉=(x cos(xt) − i sin(xt))|q〉+
√

1 − x2 cos(xt)|p〉.
(8.66)

So, the probability of being in the marked state |q〉, i.e.,
x2cos2(xt) + sin2(xt) is exactly one when t = π/2x =
π
√
n/2, so that the search time scales like

√
n as hoped.

While similar algorithms have been devised for other kinds
of graphs, the efficiency with which the marked state can
be found varies considerably. For the case of the complete
graph, the resulting algorithm is simply the continuous
time search algorithm of Farhi and Gutmann [49]. It has
be shown that, unless special tricks are used, a regular lat-
tice needs to have dimension greater than 3 for a quantum
algorithm to give any advantage over brute-force search-
ing [50].
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8.2 The resistance between two arbitrary nodes
of a finite regular lattice

A classic problem in electric circuit theory studied by nu-
merous authors over many years, is the computation of the
resistance between two nodes in a resistor network (see,
e.g., [51]). The two-point resistance has a probabilistic
interpretation based on classical random walker walking
on the network. Indeed, the connection between random
walks and electric networks has been recognized for some
time (see e.g. [52–54]), where one can establish a connec-
tion between the electrical concepts of current and voltage
and corresponding descriptive quantities of random walks
regarded as finite state Markov chains (for more details
see [55]). Also, by adapting the random-walk dynamics
and mean-field theory it has been studied that [56], how
the growth of a conducting network, such as electrical or
electronic circuits, interferes with the current flow through
the underlying evolving graphs. Our results in this subsec-
tion show that, there is also connection between the intro-
duced mathematical techniques for investigating CTQW
on graphs, such as Hilbert space of the walk based on
stratification and spectral analysis through Lanczos al-
gorithm and electrical concept of resistance between two
arbitrary nodes of regular networks and the same tech-
niques can be employed for calculating the resistance. In
reference [57], this problem is investigated in terms of the
eigenvalues and eigenfunctions of the Laplacian matrix as-
sociated with the network. Here, we obtain the same re-
sults based on stratification and spectral techniques used
through the paper for investigation of CTQW.

For a given regular graph Γ with n vertices and ad-
jacency matrix A, let rij = rji be the resistance of the
resistor connecting vertices i and j. Hence, the conduc-
tance is cij = r−1

ij = cji so that cij = 0 if there is no
resistor connecting i and j. Denote the electric potential
at the ith vertex by Vi and the net current flowing into
the network at the ith vertex by Ii (which is zero if the ith
vertex is not connected to the external world). Since there
exist no sinks or sources of current including the external
world, we have the constraint

∑n
i=1 Ii = 0. The Kirchhoff

law states

n∑
j=1,j �=i

cij(Vi − Vj) = Ii, i = 1, 2, ..., n. (8.67)

Explicitly, equation (8.67) reads

L�V = �I, (8.68)

where, �V and �I are n-vectors whose components are Vi

and Ii, respectively and

L = υI −
∑
i,j

cij |i〉〈j| (8.69)

is the Laplacian of the graph Γ with υ = deg(α), for
each vertex α. Hereafter, we will assume that all nonzero
resistances are equal to 1, then the off-diagonal elements

of −L are precisely those of the adjacency matrix A of the
graph, i.e.,

L = υI −A. (8.70)

It should be noticed that, L has eigenvector (1, 1, ..., 1)t

with eigenvalue 0. Therefore, L is not invertible and so we
define the psudo-inverse of L as

L−1 =
∑

i,λi �=0

λ−1
i Ei, (8.71)

where, Ei is the operator of projection onto the eigenspace
of L−1 corresponding to eigenvalue λi. Following the re-
sult of [57] and that L−1 is a real matrix, the resistance
between vertices α and β is given by

Rαβ = 〈α|L−1|α〉 − 2〈α|L−1|β〉 + 〈β|L−1|β〉. (8.72)

Now, for calculating the matrix elements of L−1 in (8.72),
we employ the spectral techniques based on Lanczos al-
gorithm. For diagonal elements, one can use the Stielt-
jes/Hilbert transform

〈γ|L−1|γ〉 =
∫
µγ(λ)
υ − λ

dλ, (8.73)

where, λ’s are eigenvalues of adjacency matrix A and ver-
tex depending spectral measure µγ(λ), is defined by (5.26).
Therefore, for calculating the elements L−1

αα and L−1
ββ in

(8.72), we must stratify the graph with respect to the ver-
tices α and β (each time, one of α and β is chosen as ref-
erence state in Lanczos algorithm). For calculating L−1

βα,
we choose one of the vertices, say α, as reference state.
From the fact that, the vertices belonging to the same
stratum with respect to α, have equal circumstances, it
follows that for β ∈ Γk(α), the matrix elements 〈β|L−1|α〉
and 〈φk|L−1|α〉 are equal up to constant 1√

|Γk(α)| (see Ap-

pendix B), where the vector |φk〉 is defined in (4.10). In
other words, the resistances between α and β is the same
for all β ∈ Γk(α). Therefore, it is sufficient to calculate the
matrix elements 〈φk|L−1|α〉. By using equation (5.18), we
calculate these elements via spectral method as follows

L−1
βα =

1√|Γk(α)| 〈φk|L−1|α〉

=
1√|Γk(α)|

∫
µα(λ)
υ − λ

Pk(λ)dλ, λ �= υ (8.74)

where, the polynomial Pk associated with unit vector |φk〉,
is defined by (5.18). One can notice that, the only differ-
ence with CTQW is that e−iAt is replaced by (υI −A)−1.
Also, it should be noticed that, all computations are done
in the irreducible subspace W0. For the sake of clarity, we
give three examples of complete graph, Peterson graph
and cyclic one.

8.2.1 Example 1: Complete graph

For, a complete graph with n vertices shown in Figure 5a,
we have υ = n − 1. The adjacency matrix is A = J − I,
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Fig. 4. The tree graph.

where J is a matrix with all entries equal to 1. Then, by
using continued fraction (5.22) and the relations (5.24)
and (5.26), one can obtain vertex independent spectral
measure as

µ(λ) =
1
n

((n− 1)δ(λ+ 1) + δ(λ− n+ 1)). (8.75)

Therefore, by using Stieltjes/Hilbert transform (8.73), we
obtain L−1

αα = n−1
n2 , for all α. From (8.74) and (8.75), we

obtain for L−1
βα (with α as reference state, i.e., |φ0〉 = |α〉)

L−1
βα =

1
n− 1

∫
µ(λ)

n− 1 − λ
λdλ = − 1

n2
, (8.76)

where, we have used the fact that β ∈ Γ1(α) and |φ1〉 =
1√

n−1
A|α〉, i.e., P1(λ) = 1√

n−1
λ. Therefore, by using

(8.72), we obtain

Rαβ =
2
n2

+
2(n− 1)
n2

=
2
n
. (8.77)

This result is in agreement with those of reference [57].

8.2.2 Example 2: Peterson graph

As another example, we consider the Peterson graph and
calculate the resistance between the vertices 1 and 2 in
Figure 5b. For Peterson graph, we have υ = 3. By us-
ing continued fraction (5.22) and the relations (5.24) and
(5.26), one can obtain

µ(λ) ≡ µ1(λ) = µ2(λ)

=
1
10
δ(λ − 3) +

1
2
δ(λ− 1) +

2
5
δ(λ+ 2).

(8.78)

Now, by using Stieltjes/Hilbert transform (8.73), we cal-
culate

L−1
11 = L−1

22 =
∫

µ(λ)
3 − λ

dλ =
33
100

. (8.79)

By using P1(λ) = λ√
3

and (8.74), we obtain

L−1
21 = L−1

12 =
1
3

∫
λµ(λ)
3 − λ

dλ =
3

100
. (8.80)

(a)

(b)

(c)

Fig. 5. (a) The complete network. (b) The Peterson network.
(c) The cyclic network.

Now, by using (8.72), one obtains

R12 = 2
33
100

− 2
3

100
=

3
5
. (8.81)

8.2.3 Example 3: Cyclic graph

Now, we consider cyclic graph with n vertices shown in
Figure 5c. Clearly υ = 2 and the adjacency matrix reads
A = S + S−1, where

S =

⎛
⎜⎜⎜⎜⎝

0 1 0 ... 0
...

. . . . . . . . .
...

0 . . . 0 1 0
0 0 . . . 0 1
1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎠
, (8.82)



M.A. Jafarizadeh et al.: Investigation of continuous-time quantum walk by using Krylov subspace-Lanczos algorithm 211

is circulant matrix with period n, i.e., Sn = I. The spec-
tral measure is reference independent and is given by

µ(λ) =
1
n

n−1∑
l=0

δ

(
λ− 2 cos

2πl
n

)
. (8.83)

For two arbitrary vertices α and β, with α as reference
vertex for stratification, we obtain

L−1
αα = L−1

ββ =
∫

µ(λ)
2 − λ

dλ =
1
2n

n−1∑
l=1

1
1 − cos 2πl

n

. (8.84)

By using Lanczos algorithm applied to |α〉, one can easily
obtain the polynomials Pk(x) as follows

P0(x) = 1, Pk(x) =
√

2Tk

(
x

2

)
, (8.85)

where, Tk are Tchebichef polynomials of the first kind de-
fined by

Tk(x) = cos(k cos−1 x). (8.86)

If β belongs to the kth stratum Γk(α), in this case we have
β − α = k, then we will have

L−1
βα =

1√
2

∫
µ(λ)
2 − λ

Pk(λ)dλ

=
1√
2n

n−1∑
l=1

Pk(2 cos 2πl
n )

2(1 − cos 2πl
n )

=
1
2n

n−1∑
l=1

cos 2πkl
n

1 − cos 2πl
n

, (8.87)

where, we have used Pk(2 cos 2πl
n ) =

√
2 cos(2πkl

n ). Now,
by using (8.84), (8.87) and (8.72) we obtain

Rβα =
1
n

n−1∑
l=1

1 − cos 2πkl
n

1 − cos 2πl
n

, (8.88)

where, the result is in agreement with those of refer-
ence [57].

8.3 Tight-binding on a generic structure

The tight-binding approximation [58] is widely used when
dealing with quantum particles on discrete structures,
such as solids, molecules, atomic clusters. The Hamilto-
nian of such a system has the form

H =
∑
i,j

hija
†
iaj, (8.89)

where, a†i and ai are the creation and annihilation operator
at site i with [ai, a

†
j ] = δij . The Hamiltonian matrix hij is

defined as [59]
hij = tAij + aziδij , (8.90)

where, the off-diagonal term, called hopping term,
contains the adjacency matrix describing the topological
arrangement of the structure and the so-called hopping
parameter t and the diagonal term, called local term, con-
tains the local parameter a and the coordination number
zi =

∑
j Aij , namely the number of nearest neighbours of

the ith site. On a periodic lattice (with homogeneous ele-
mentary cell) this term is site-independent and it can be
dropped without loss of generality, since it simply results
in a rigid shift of the spectrum.

A route to the spectrum of the Hamiltonian (8.90)
(on a periodic lattice) alternative to direct diagonaliza-
tion, passes through the so-called Local Density of States
(LDOS), which is related to Green’s functions by the for-
mula [60]

ρi(ω) = − 1
π

lim
ε→0

Im(Gii(ω + iε)). (8.91)

The Green’s function is defined by

G(ω) =
1

ω − tA
. (8.92)

Denoting |i〉 the eigenfunction of the position operator at
site i and φk the eigenfunction of the Hamiltonian oper-
ator relevant to the eigenvalue ωk, H |φk〉 = ωk|φk〉, one
gets

G(ω) =
∑

k

|φk〉〈φk|
ω − ωk

, (8.93)

thus one can write Gij(ω) = 〈i|G(ω)|j〉 =∑
k〈i|φk〉〈φk|j〉(ω − ωk)−1. Plugging this result into

equation (8.91) and recalling that limε→0 Im(ω± iε)−1 =
∓πδ(ω), one gets

ρi(ω) =
∑

k

δ(ω − ωk)|〈i|φk〉|2. (8.94)

Equation (8.94) sheds light on the significance of the
LDOS at site i. The density of states (DOS), is recovered
by summing the LDOS over all sites:

∑
i

ρi(ω) =
∑

k

δ(ω − ωk)
∑

i

|〈i|φk〉|2

=
∑

k

δ(ω − ωk) = ρ(ω). (8.95)

One could notice that, Gii(ω) is the same Stieltjes/Hilbert
transform defined in (5.22) and from (5.26), it is seen that
ρi(ω) is the inverse Stieltjes/Hilbert transform of Gii(ω).
Therefore, inverse Fourier transform of ρi(ω) gives the
probability amplitude of observing the CTQW at start-
ing site i at time t. Depending on starting site of the walk
as reference vertex, the graph may be of QD, GQD or non-
GQD type, e.g., the finite path graph with first vertex as
reference vertex is a graph of QD type, while with second
one as reference vertex is of non-GQD type, as we consid-
ered in Section 7.2.1. Therefore, calculating the DOS ρ(ω)
from (8.95) is not an easy work.



212 The European Physical Journal B

8.3.1 Infinite line as a hopping model

Consider a periodic potential in one dimension, where
V (x + a) = V (x). Realistically, we may consider the mo-
tion of an electron in a chain of regularly spaced pos-
itive ions. Clearly, the Hamiltonian H is invariant un-
der the translation T (a), where T (a) has the property
T (a)|x〉 = |x+ a〉. Now, let us assume that the particle is
localized at the nth site and denote the corresponding ket
by |n〉. This is an energy eigenket with energy eigenvalue
E0, namely, H |n〉 = E0|n〉. In the case that the barrier
between two adjacent sites is not infinitely high, we ex-
pect that there is some leakage possible into neighboring
sites due to quantum tunneling. The diagonal elements of
H in the {|n〉} basis, are all equal because of translation
invariance, i.e., 〈n|H |n〉 = E0, for all n. However, we sus-
pect that H is not diagonal in this basis due to leakage.
One can assume that

〈n′|H |n〉 �= 0, only if n′ = n, n± 1. (8.96)

In solid state physics this assumption is known as the
tight-binding approximation. By defining 〈n ± 1|H |n〉 =
−∆, one obtains

H |n〉 = E0|n〉 −∆|n+ 1〉 −∆|n− 1〉. (8.97)

In fact, H is symmetric tridiagonal in the {|n〉} basis. One
could notice that, this Hamiltonian can be viewed as ad-
jacency matrix of infinite path graph which is projected
to the subspace W0 with basis produced by lanczos algo-
rithm applied to adjacency matrix and starting site of the
walk as reference state. The problem of finding probabil-
ity amplitude of observing the electron at kth ion at time
t if electron be localized at ith ion initially, can be solved
by CTQW on infinite path, where we investigated it in
Section 7.2.1 via spectral methods.

In references [20,61], CTQW on some ideally perfect
quantum graphs called Gn first studied in [5], has been
investigated where the exponential speed-up of quantum
walks on these graphs relative to classical particles diffus-
ing on the same graphs, has been discussed as a striking
observation. Also, by using well-established ideas from the
theory of Anderson localization applied to these quantum
walks, the authors of reference [61] showed that when the
graphs have imperfections, as they surely will in any real
physical implementation, the propagation of quantum in-
formation is suppressed exponentially in the amount of
imperfection. The techniques such as generalized stratifi-
cation and Krylov-subspace Lanczos algorithm employed
in this paper, enable us to investigate the same prob-
lems on more general graphs due to the fact that these
techniques cause us to give a tridiagonal form to the
Hamiltonians (adjacency matrices of the graphs) in the
subspaces spanned by the stratification basis (called also
column subspace), i.e., any given graph can be projected
to a weighted line graph in which each vertex |i〉 is adja-
cent with vertices |i− 1〉 and |i+ 1〉.

8.4 A spin chain model

In [62], a spin chain model was introduced to describe a
system of n qubits containing imperfections which gener-
ate a residual inter-qubit coupling and fluctuations in the
energy spacings between the two states of one qubit. The
Hamiltonian of this model reads as

H =
∑
i<j

Jijσ
x
i σ

x
j +

∑
i

Γiσ
z
i , (8.98)

where, the σi are the Pauli matrices for the qubit i. Γi

represent the energy spacing between the two states of a
qubit and the couplings Jij represent the residual static
interaction between qubits (this model is called standard
generic quantum computer model, for more details see [62,
63]). For special case where, the energy spacing Γi and
coupling parameters Jij are the same for all qubits, the
Hamiltonian (8.98) reads as

H =
∑
i<j

σx
i σ

x
j +

∑
i

σz
i . (8.99)

Now, one could notice that, in the special
Hamiltonian (8.99), the first term can be viewed as
adjacency matrix of underlying graph of Hamming asso-
ciation scheme H(2, n) [27] and can be block-diagonalized
via Krylov subspace-Lanczos algorithm as illustrated in
Section 4. On the other hand, the Hamiltonian (8.99)
belongs to a semisimple algebra known as Terwilliger
algebra [64] associated with Hamming scheme H(2, n).
The basis for irreducible subspaces of this algebra are
equal with those of adjacency matrix and therefore, the
corresponding Hamiltonian can be block-diagonalized
via Lanczos algorithm process, in order to evaluating
corresponding spectrum.

9 Conclusion

By turning the graphs into a metric space based on dis-
tance function, we have been able to generalize the strat-
ification and quantum decomposition introduced in [21].
Then the CTQW on arbitrary graphs are investigated by
spectral distribution method based on Krylov subspace-
Lanczos algorithm. We have showed that both in QD and
GQD graphs, the unit vectors of strata are identical with
the orthonormal basis produced by Lanczos algorithm.
For more general graphs, we have used the Lanczos al-
gorithm to get a basis in which the adjacency matrix
has tridiagonal form, where it is necessary for determi-
nation of spectral distribution of adjacency matrix by us-
ing inverse Stieltjes/Hilbert transform. We believe that,
the introduced formalism (reduction to subspace W0 to-
gether with spectral analysis method) is a powerful and
general tool which can be applied not only for investi-
gating the CTQW on any arbitrary graph, but also for
studying the most physical problems such as implementa-
tion of quantum search algorithms, resistor circuit theory,
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tight-binding Hamiltonian and particular spin chain mod-
els where, the Hamiltonian is projected to the largest irre-
ducible subspace. We have discussed that, the CTQW on
complete graph implements Grover’s algorithm. It is nat-
urally expected that CTQW on more general graphs such
as finite path graph, Hamming graph, etc. can implement
other spatial search problems, where this problem is under
investigation. Also, our method was applied to calculat-
ing the resistance between two arbitrary vertices of regular
graphs. Although in the present paper we gave three ex-
amples of complete graph, Peterson and cyclic ones, the
method can be applied for any finite or infinite regular
graph similarly.

Appendix A

In this appendix we show that in the case of GQD graphs
the unit vectors of strata (i.e., Eq. (4.9)), are the same as
the orthonormal basis produced via Lanczos algorithm.
To do so, let us consider the action of adjacency matrix A
over |φk〉 as

A|φk〉 =
1√∑
α g

2
k,α

∑
α∈Γk(o)

gk,αA|k, α〉

=
1√∑
α g

2
k,α

∑
α∈Γk(o)

gk,α

∑
ν∈Γk+1(o),α∼ν

|k + 1, ν〉

+
1√∑
α g

2
k,α

∑
α∈Γk(o)

gk,α

∑
ν∈Γk(o),α∼ν

|k, ν〉

+
1√∑
α g

2
k,α

∑
α∈Γk(o)

gk,α

∑
ν∈Γk−1(o),α∼ν

|k − 1, ν〉,

(A.i)

now in order to have a GQD graph the coefficients gk,α

should satisfy the following conditions
∑

α∈Γk(o)

gk,α = γk+1gk+1,ν , (A.ii)

for all ν ∈ Γk+1(o) and α ∼ ν,
∑

α∈Γk(o)

gk,α = ηkgk,ν , (A.iii)

for all ν ∈ Γk(o) and α ∼ ν,

∑
α∈Γk(o)

gk,α = γk

( ∑
α∈Γk(o) g

2
k,α∑

ξ∈Γk−1(o) g
2
k−1,ξ

)
gk−1,ν , (A.iv)

for all ν ∈ Γk−1(o) and α ∼ ν. One should note that the
constants γk and ηk depend only on strata number.

Then by defining βk = γk

√ ∑
α∈Γk(o) g2

k,α∑
ξ∈Γk−1(o) g2

k−1,ξ
and αk =

ηk for all α ∈ Γk(o), ξ ∈ Γk−1(o) and ξ ∼ α, the three-term
recursion relations (A.i) reduce to those given in (2.2).

Therefore similar to the QD case, the adjacency matrix
takes a tridiagonal form in the basis |φk〉 (orthonormal ba-
sis associated with strata of GQD graphs), consequently
these basis are identical with the orthonormal basis pro-
duced by Lanczos algorithm.

Appendix B

Here in this appendix we first prove that in GQD graphs,
the ratio of amplitude of a vertex in a given stratum to
its coefficient appearing in (4.9) is constant, i.e., φk,α

gk,α
is

independent of α ∈ Γk(o). To do so, let us consider the
eigenket |φk〉 given in (4.9), it is straightforward to see
that, the eigenket |φk〉 together with the following set of
states

|φ⊥k,l〉 =
1√∑

ν∈Γk(o)
1

|gk,ν |2

∑
α∈Γk(o)

ωlα

gk,α
|k, α〉,

l = 1, 2, ..., |Γk(o)| − 1, (B.i)

form a set of orthonormal basis for a complex space formed
by linear span of eigenkets belonging to stratum k where
ω = e

− 2πi
|Γk(o)| .

The above given states are actually orthogonal to all
states of walk space (Vw), since the eigenket of other stra-
tum do not contain any of |k, α〉, α ∈ Γk(o). Therefore,
e−iAt|φo〉 is orthogonal to set of orthogonal vectors |φ⊥k,l〉,
for all l = 1, 2, ..., |Γk(o)| − 1; k = 0, 1, ..., d since it is a
state which remains in Vw for all t. Now, substituting (4.9)
in (6.32) and 〈φ⊥k,l|e−iAt|φ0〉 = 0, l = 1, 2, ..., |Γk(o)| − 1,
we get the following set of equations for amplitudes of
vertices belonging to stratum k,

qk(t) =
1√∑

ν∈Γk(o) g
2
k,ν

∑
α∈Γk(o)

gk,αqk,α(t), (B.ii)

0 =
1√∑

ν∈Γk(o)
1

g2
k,ν

∑
α∈Γk(o)

ω−lα

gk,α
qk,α(t), (B.iii)

l = 1, 2, ..., |Γk(o)| − 1, (B.iv)

where qk,α(t) denotes the amplitude of vertex α ∈ Γk(o).
To solve equations (B.ii) and (B.iv), first we multiply
equations (B.iv) by ωlν and sum over l = 1, 2, ..., |Γk(o)|−
1, where by using the identity

∑|Γk(o)|−1
l=0 ωl(ν−α) =

|Γk(o)|δαν , we get for ν �= α

qk,α(t)
gk,α

=
1

|Γk(o)|
∑
ν �=α

qk,ν(t)
gk,ν

, for all α ∈ Γk(o).

(B.v)
Above equations imply that qk,α(t)

gk,α
= qk,ξ(t)

gk,ξ
= Bk for all

α, ξ ∈ Γk(o) where, Bk is some constant independent of
vertices of stratum k, and it can be determined by substi-
tuting qk,α(t) = Bkgk,α in (B.ii) as

Bk =
1√∑

ν∈Γk(o) g
2
k,ν

qk(t). (B.vi)
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Therefore, probability amplitude of observing walk at
given vertex is proportional to its coefficient gk,α and it
can be written in terms of amplitude of the kth stratum
qk(t) as

qk,α(t) =
gk,α√∑

ν∈Γk(o) g
2
k,ν

qk(t). (B.vii)

In QD graphs we have gk,α = 1, for all α ∈ Γk(o), hence
vertices belonging to the same stratum, have the same
amplitude which is in agreement with the result of Ap-
pendix I of reference [1].

In non-GQD type graphs, the coefficients of unit vec-
tors |φk〉 do not satisfy the conditions (A.ii)–(A.iv), and
we can not obtain vectors orthogonal to Vwalk by the
above explained prescription of GQD graphs. Therefore,
one should use Lanczos algorithm for obtaining n inde-
pendent linear equations, where the amplitudes of vertices
of the graph can be deteremined by solving them. Let the
Krylov subspace generated by the adjacency matrix A and
starting site |φ0〉 has dimension d, then we will have d unit
vectors of strata produced from Lanczos algorithm applied
to the pair (A, |φ0〉) (one should note that the walk space
Vwalk is generated by applying the Lanczos algorithm to
adjacency matrix and starting site of the walk ). In the
most cases, the dimension of Vwalk is less than the num-
ber of vertices (d < n), i.e., the Lanczos algorithm applied
to the pair (A, |φ0〉), dose not produce the enough basis,
therefore for obtaining remaining equations we choose new
reference states orthogonal to walk space Vwalk and then
we apply the Lanczos algorithm to the adjacency matrix
with new reference states, respectively. In the following,
we explain the procedure in details for the following ex-
ample.

Example

We consider tree graph of Figure 4, with six vertices and
complete orthonormal basis

{|1〉, |2〉, |3〉, |4〉, |5〉, |6〉},

where vertex |1〉 is considered as starting site of the walk.
We apply the Lanczos algorithm to adjacency matrix A
and starting site |φ0〉 = |1〉, where orthonormal basis and
coefficients αk, βk produced from Lanczos algorithm are

|φ0〉 = |1〉, |φ1〉 =
1√
3
(|2〉 + |3〉 + |4〉)

|φ2〉 =
1√
2
(|5〉 + |6〉), |φ3〉 =

1√
6
(−2|2〉 + |3〉 + |4〉),

β1 =
√

3, β2 =
√

2/3, β3 =
√

1/3; α1 =α2 =α3 =α4 =0,
(B.viii)

respectively. One can straightforwardly show that the cor-
responding Stieltjes/Hilbert transform of µ and spectral

distribution are

Gµ(z) =
z3 − (1 +

√
2)z/

√
3

z4 − (4 +
√

2)z2/
√

3 + 1
,

µ = 0.2851952676(δ(x− 1.662563892)
+ δ(x+ 1.662563892))
+ 0.2148047323(δ(x− 0.6014806445)
+ δ(x+ 0.6014806445), (B.ix)

respectively, which yield the following probability ampli-
tudes of walk at kth stratum at time t, for k = 0, 1, 2, 3

q0(t) =
∫

R

e−ixtµ(dx) = 0.2851952676 cos(1.662563892t)

+ 0.2148047323 cos(0.6014806445t).

q1(t) =
1√
3

∫

R

e−ixtP ′
1(x)µ(dx) =

1√
3

∫

R

xe−ixtµ(dx)

=
2
i
√

3
[0.2851952676 sin(1.662563892t)

+ 0.2148047323 sin(0.6014806445t)],

q2(t) =
1√
2

∫

R

e−ixtP ′
2(x)µ(dx)

=
1√
2

∫

R

(x2 −
√

3)e−ixtµ(dx)

=
1√
2
[0.2943408772 cos(1.662563892t)

− 0.2943408762 cos(0.6014806445t)],

q3(t) =
√

3√
2

∫

R

e−ixtP ′
3(x)µ(dx)

=
√

3√
2

∫

R

(x3 − 3 +
√

2√
3

x)e−ixtµ(dx)

=
6
i
√

6
[0.102214289 sin(1.662563892t)

− 0.2825324240 sin(0.6014806445t)]. (B.x)

Obviously, we need two extra equations for obtaining am-
plitudes on sites of the graph. According to the above
explained prescription we can consider

|ψ0〉 =
1√
2
(|5〉 − |6〉), (B.xi)

as new reference state (|ψ0〉 ∈ V ⊥
walk) and then by applying

Lanczos algorithm to the pair (A, |ψ0〉) we obtain

|ψ1〉 =
1√
2
(|3〉 − |4〉), (B.xii)

which leads to two following extra equations

〈ψ0|e−itA|φ0〉 = 0,

〈ψ1|e−itA|φ0〉 = 0. (B.xiii)
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Now, by solving the above six equations, one can obtain
amplitudes of CTQW on vertices of the graph as

〈1|e−iAt | φ0〉 = q0(t),

〈2|e−iAt | φ0〉 =
1√
3
(q1(t) −

√
2q3(t)),

〈3|e−iAt | φ0〉 = 〈4|e−iAt | φ0〉 =
1√
3
(q1(t) +

1√
2
q3(t)),

〈5|e−iAt | φ0〉 = 〈6|e−iAt | φ0〉 =
1√
2
q2(t), (B.xiv)

where q0(t), q1(t), q2(t) and q3(t) have been given in equa-
tion (B.x).
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